

Tetrahedron Letters

Tetrahedron Letters 46 (2005) 4265-4268

The fragmentation of *exo-5*-norbornenyl-2-oxychlorocarbene: stereochemistry and mechanism

Xiaolin Fu, a Robert A. Moss, a,* Ronald R. Sauers, and Peter Wipf, a

^aDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA

^bDepartment of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA

Received 16 March 2005; accepted 21 March 2005 Available online 28 April 2005

Abstract—The fragmentation of (S)-exo-5-norbornenyl-2-oxychlorocarbene (**3**) affords (S)-exo-5-norbornenyl-2-chloride (**4**), (R)-endo-5-norbornenyl-2-chloride (**5**), and (S)-3-nortricyclyl chloride (**6**) with varying degrees of enantiomeric excess. A weighted blend of S_N i fragmentation and escape to norbornenyl/nortricyclyl ion pairs rationalizes the stereochemical results. © 2005 Elsevier Ltd. All rights reserved.

Reactions that formally pass through either the 5-nor-bornen-2-yl cation (1) or the nortricyclyl cation (2) usually afford product mixtures that are rich in nortricyclyl derivatives. ¹⁻³ Indeed, cations 1 and 2 are better considered canonical forms of a resonance hybrid whose structure is closer to 2.⁴⁻⁷

Olah and Liang recognized that ion pairing can affect the norbornenyl/nortricyclyl product distribution from 1/2,6 and we recently observed that fragmentation of exo-5-norbornenyl-2-oxychlorocarbene (3) yielded mixtures dominated by norbornenyl products.8 For example, fragmentations of 3 in cyclohexane- d_{12} gave 53% of exo-5-norbornen-2-yl chloride (4), 31% of the isomeric endo chloride (5), and 16% of nortricyclyl chloride (6); whereas, in the more polar solvent CD₃CN, only chlorides 4 and 6 were obtained (in a 57:43 distribution).8 Computational studies suggested that S_Ni fragmentations of 3 were largely responsible for the formation of chlorides 4 and 5 in C₆D₁₂, while escape to an ion pair allowed the formation of some 6. In the more polar solvent, ion pair formation was enhanced,

and 4 and 6 formed from $(1/2)^+Cl^-$ in nearly comparable quantities.⁸

Carbene 3 and products 4–6 are chiral. Consequently, determining the stereochemical course of the reaction sequence should provide a more nuanced mechanistic scenario. Here we present the first stereochemical investigation of these reactions.

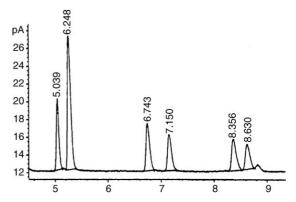
Norbornadiene was hydroborated with dicaranylborane (derived from (+)-3-carene and borane-methyl sulfide) to give (+)-exo-norborn-5-en-2-ol (7), $[\alpha]_D^{25}$ +4.78 (e 8.51, CHCl₃). The dextrorotatory alcohol was identical (1 H and 13 C NMR) to literature descriptions, 10 and was of (S) configuration at C2, 9 with 49% ee. 11 Conversion of the alcohol to isouronium salt **8** (cyanamide, CH₃SO₃H), 12 and thence to diazirine **9** (NaOCl), 13 proceeded as previously described. 8 The diazirine was purified by column chromatography and characterized

^{*} Corresponding authors. Tel.: +1 732 445 2606; fax: +1 732 445 5312; e-mail: moss@rutchem.rutgers.edu

by IR, UV, ¹H, and ¹³C NMR spectroscopy; details for racemic **9** appear in Ref. 8.

Photolysis (350 nm) or thermolysis (25 °C) of diazirine (S)-9 in C₆D₁₂, CDCl₃ or CD₃CN afforded carbene (S)-3, and thence fragmentation products **4–6**. The (¹H NMR) product distributions are recorded in Table 1. Photolysis or thermolysis of **9** led to generally comparable product distributions. As noted previously,⁸ the formation of *endo*-norbornenyl chloride **5** was important only in the hydrocarbon solvent; in CDCl₃ or CD₃CN, **5** was suppressed in favor of nortricyclyl chloride **6**.

In order to define the stereochemical courses of the (S)-3 to 4–6 conversions we required the absolute configurations and associated rotatory properties of these chlorides. This information was unknown, and so we computed it.¹⁴ The structures of 4–6 were minimized at the DFT-RB3LYP level with a 6-31G(d) basis set, and the optical rotations at the sodium D line were calculated with RB3LYP/6-311++G(2d,p) from the Gaussian 03 suite.¹⁵ The computed linkage of absolute configuration and calculated specific rotation for each product chloride is illustrated below, where the computed [α]_D value pertains to solvents like CH₂Cl₂ or CHCl₃.

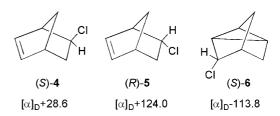

Samples of (R)-(-)-4, (S)-(-)-5, and (S)-(-)-6) were obtained by chromatographic separations of the product mixtures from fragmentation reactions of (S)-nortricyclyloxychlorocarbene¹⁶ and (S)-endo-5-norbornenyl-2oxychlorocarbene. 17 These chloride samples helped us to assign peak identities on GC separations of the products from the fragmentations of carbene (S)-3. Product mixtures were analyzed on a 30 m × 0.25 mm Chiraldex GTA column at 50 °C, which permitted the separation of each enantiomer of 4-6. An example of the GC separation, with peak assignments, appears in Figure 1 for the products from the fragmentation of (S)-3 in C₆D₁₂; peak areas are electronically integrated. The GC results establish that fragmentation of (S)-3 leads predominantly to chlorides (S)-4, (R)-5, and (S)-6 (see above for structures and configurations). The product ee's and the % ee's of the conversions are collected in Table 2, corrected for the 49% ee of carbene (S)-3.

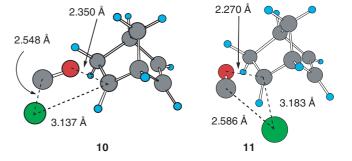
Next, we consider the stereochemistry of formation of each product in turn, starting with *exo*-5-chloro-2-nor-bornene, **4**, the major fragmentation product of carbene **3**. In C_6D_{12} , carbene (S)-**3** gives **4** with 90–100% net retention; there is $\sim 10\%$ racemization when the carbene is photochemically generated, but complete retention

Table 1. Product distributions from the fragmentation of carbene 3

Solvent	Methoda	%4	%5	%6
C_6D_{12}	hv	54	29	17
C_6D_{12}	Δ	53	31	16
$CDCl_3$	hv	61	5	34
$CDCl_3$	Δ	60	4	36
CD_3CN	hv	59	5	36
CD ₃ CN	Δ	63	tr	37

^a Photolysis or thermolysis of diazirine (S)-9, both at 25 °C.


Figure 1. Separation of chloride products from the fragmentation of carbene (S)-3 on a Chiraldex GTA column at 50 °C. The numbers are retention times in minutes. From left to right, the peak assignments are (R)-4, (S)-4, (R)-5, (S)-6, and (R)-6. The final, small peak is an unknown.


Table 2. Stereochemistry of formation of product chlorides^{a,b}

Solvent	Method ^c	(S)- 4		(R)- 5		(S)- 6	
		Ee	% Ee ^d	Ee	% Ee ^d	Ee	% Ee ^d
C_6D_{12}	hv	44.3	90.4	8.87	18.1	12.1	24.7
C_6D_{12}	Δ	50.0	100	8.55	17.4	8.68	17.7
$CDCl_3$	hv	31.8	64.9	11.3	23.1	7.57	15.4
$CDCl_3$	Δ	33.7	68.8	10.1	20.6	7.81	15.9
CD_3CN	hv	29.4	60.0	e	e	6.56	13.4
CD_3CN	Δ	34.9	71.2	e	e	12.0	24.5

^a From (S)-9 via carbene (S)-3, assuming 49% ee, as in alcohol (S)-7.

from thermolysis of diazirine (*S*)-9 (Table 2). This result is in agreement with the S_N i-like process computed for the $3 \rightarrow 4$ conversion ($\Delta G^{\ddagger} = 12.1$ kcal/mol in vacuum);⁸ cf., transition state (TS) 10.¹⁸

^b Product ee analysis by GC on a Chiraldex GTA column; see text.

^c Photolysis or thermolysis of diazirine **9** at 25 °C.

^d Corrected for 49% ee of carbene (S)-3.

^e Inadequate sample size.

Scheme 1.

Scheme 2.

In C_6D_{12} , S_Ni formation of **4** with retention dominates, but as the solvent becomes more polar (CDCl₃ or CD₃CN), retention in the **3** \rightarrow **4** conversion decreases to 60–70%. The enhanced racemization can be explained by competitive fragmentation to an ion pair which can give either (S)-**4** or (R)-**4** upon reopening; cf., ion pair **A** in Scheme 1.¹⁹

In C_6D_{12} , fragmentation of (S)-3 also produces $\sim 30\%$ of endo-5-chloro-2-norbornene (5), but with only $\sim 18\%$ net retention. Computational studies predict direct S_{Ni} formation of (R)-5 from carbene (S)-3 via TS 11.8,18 However, the extensive racemization (82%) implies that fragmentation to an ion pair successfully competes with the S_{Ni} process. 19,20 The dominant enantiomer (R)-5 can be obtained from ion pair A of Scheme 1 by migration of Cl^- from the exo to endo face of the norbornenyl cation prior to recombination. Alternatively, a reversible nortricyclyl-bicyclo[3.1.1]heptenyl 1,2-carbon shift⁴ can af-

ford chloride (*S*)-**5** from carbene (*S*)-**3**; cf., Scheme 2. In SO_2ClF , the experimental E_a for the 1,2-C shift is $\sim 17 \text{ kcal/mol.}^4$ Collapse of ion pair **B** (Scheme 2) leads to (*S*)-**5**.

As solvent polarity increases from C_6D_{12} to CDCl₃ and CD₃CN, the importance of TS 11 declines; only 4–5% of endo-chloride 5 (again with ~20% ee) forms upon fragmentation of carbene 3 (Table 1). Most of the product in the polar solvents consists of exo-chloride 4 and 3-nortricyclyl chloride 6, presumably derived from the fragmentation of carbene 3 via TS 10 (for 4), and the nortricyclyl chloride ion pair derived therefrom (for 6).

The third product from carbene 3 is 3-nortricyclyl chloride 6, which forms in $\sim 17\%$ yield in C_6D_{12} , increasing to $\sim 36\%$ in the more polar CDCl₃ or CD₃CN (Table 1). It arises mainly as (S)-6, with ee $\sim 13-25\%$ over the solvent range of Table 2. As we have suggested, even

Scheme 4

in C₆D₁₂ there must be some 'leakage' of carbene 3 to a tight norbornenyl/nortricyclyl chloride ion pair; cf., Scheme 3.

Here, return of chloride via path (a) generates product (S)-4, while chloride migration to the underside of the cation via path (b) generates (S)-6, the predominant enantiomer of product 6. This is the 'least motion' pathway to **6**; further motion to the exo face of the cation by path (c) affords (R)-6, the minor enantiomer.

One could also obtain (S)-6 by a 3,5-hydride shift within the initially formed nortricyclyl chloride ion pair, followed by recombination (Scheme 4), but this process would require an activation energy significantly greater than 18.4 kcal/mol.⁴

In summary, the fragmentation of carbene (S)-3 affords chlorides (S)-4, (R)-5, and (S)-6 with varying degrees of enantiomeric excess which depend, in part, on solvent polarity. The stereochemical courses of the transformations can be understood as weighted blends of S_Ni fragmentations, coupled with escape to norbornenyl/ nortricyclyl ion pairs in which stereochemical integrity is compromised. Note that the fragmentation of (S)-3nortricyclyloxychlorocarbene via competing S_Ni transition states leads to (S)-6 and (R)-6, resulting in extensive racemization of the 3-nortricyclyl chloride product. ¹⁶ In contrast, fragmentation of (S)-3 proceeds via analogous S_Ni transition states 10 and 11, which lead to different products, (S)-4 and (R)-5, with the former produced with essentially complete retention. Clearly, our ability to follow the stereochemistry of product formation from the fragmentation of 3 enables us to refine the available mechanistic possibilities.

Acknowledgements

We are grateful to the National Science Foundation for financial support, and to the National Center for Computer Applications for time on the IBM P Series 690 (to R.R.S.).

References and notes

- 1. Cristol, S. J.; Seifert, W. K.; Johnson, D. W.; Jurale, B. J. J. Am. Chem. Soc. 1962, 84, 3918.
- 2. Roberts, J. D.; Lee, C. C.; Saunders, W. H., Jr. J. Am. Chem. Soc. 1955, 77, 3034.

- 3. Kirmse, W.; Knopfel, N. J. Am. Chem. Soc. 1976, 98,
- 4. Jarret, R. M.; Veniero, J. C.; Byrne, T. P.; Saunders, M.; Laidig, K. E. J. Am. Chem. Soc. 1988, 110, 8287.
- 5. Olah, G. A.; Liang, G. J. Am. Chem. Soc. 1973, 95,
- 6. Olah, G. A.; Liang, G. J. Am. Chem. Soc. 1975, 97, 1920.
- 7. Saunders, M.; Jarret, R. M.; Pramanik, P. J. Am. Chem. Soc. 1987, 109, 3735.
- Moss, R. A.; Ma, Y.; Sauers, R. R.; Madni, M. J. Org. Chem. 2004, 69, 3628.
- Brown, H. C.; Vara Prasad, J. V. N.; Zaidlewicz, M. J. Org. Chem. 1988, 53, 2911.
- 10. (a) Stothers, J. B.; Tan, C. T.; Teo, K. C. Can. J. Chem. 1976, 54, 1211; (b) Vedejs, E.; Salomon, M. F. J. Am. Chem. Soc. 1970, 92, 6965.
- 11. Based on $[\alpha]_D^{23}$ +9.75 (*c* 8.7, CHCl₃) for 100% ee.⁹ 12. Moss, R. A.; Kaczmarczyk, G.; Johnson, L. A. *Synth*. Commun. 2000, 30, 3233.
- 13. Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396.
- 14. For examples of the assignment of absolute configuration by ab initio theory and the calculation of $[\alpha]_D$, see: (a) Kondru, R. K.; Wipf, P.; Beratan, D. N. J. Am. Chem. Soc. 1998, 120, 2204; (b) Kondru, R. K.; Wipf, P.; Beratan, D. N. Science 1998, 282, 2247; (c) Ribe, S.; Kondru, R. K.; Beratan, D. N.; Wipf, P. J. Am. Chem. Soc. 2000, 122, 4608; (d) Specht, K. M.; Nam, J.; Ho, D. M.; Berova, N.; Kondru, R. K.; Beratan, D. N.; Wipf, P.; Pascal, R. A.; Kahne, D. J. Am. Chem. Soc. 2001, 123, 8961; Review: (e) Polavarapu, P. L. Chirality 2002, 14,
- 15. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.03; Gaussian: Pittsburgh, PA, 2003.
- 16. Moss, R. A.; Fu, X.; Tian, J.; Sauers, R. R.; Wipf, P. Org. Lett. 2005, 7, 1371.
- 17. These reactions will be described in a full paper.
- 18. TS 10 and TS 11 are derived from (S)-3, but are rotated by 180° to bring the reaction centers to the foreground.
- 19. Direct fragmentation of ROCCl to short-lived ion pairs occurs in hydrocarbon solvents when R = cyclopropylmethyl: Moss, R. A.; Sauers, R. R.; Zheng, F.; Fu, X.; Bally, T.; Maltsev, A. J. Am. Chem. Soc. 2004, 126, 8466.
- 20. Computationally, S_{Ni} TS 11 is slightly preferred to S_{Ni} TS 10 in vacuum; $\Delta G_{10}^{\ddagger} = 11.6 \text{ kcal/mol}$ versus $\Delta G_{10}^{\ddagger} = 12.1 \text{ kcal/mol}$. However, the preferential formation of exo-4 with complete retention, together with the extensive racemization observed in the competing formation of endo-5, suggest that passage over TS 10 requires a somewhat lower ΔG^{\ddagger} in C₆D₁₂ solution.